Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1529(1): 101-108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37715781

RESUMO

This study assessed the projected near-surface wind speed (SWS) changes and variability over the Iberian Peninsula for the 21st century. Here, we compared Coupled Model Intercomparison Project Phase 6 global climate models (GCMs) with a higher spatial resolution regional climate model (RCM; ∼20 km), known as WRF-CESM2, which was created by a dynamic downscaling of the Community Earth System Model version 2 (CESM2) using the Weather Research and Forecasting (WRF) model. Our analysis found that the GCMs tended to overestimate observed SWS for 1985-2014, while the higher spatial resolution of the WRF-CESM2 did not improve the accuracy and underestimated the SWS magnitude. GCMs project a decline of SWS under high shared socioeconomic pathways (SSPs) greenhouse concentrations, such as SSP370 and SSP585, while an interdecadal oscillation appears in SSP126 and SSP245 for the end of the century. The WRF-CESM2 under SSP585 predicts the opposite increasing SWS. Our results suggest that 21st-century projections of SWS are uncertain even for regionalized products and should be taken with caution.


Assuntos
Cinarizina , Modelos Climáticos , Humanos , Vento , Incerteza , Tempo (Meteorologia) , Mudança Climática
3.
Ann N Y Acad Sci ; 1518(1): 249-263, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36240009

RESUMO

We evaluate the performance of Coupled Model Intercomparison Project Phase 6 (CMIP6) models in simulating the observed global terrestrial near-surface wind speed (NSWS) and project its future changes under three different Shared Socioeconomic Pathways (SSPs). Results show that the CESM2 has the best ability in reproducing the observed NSWS trends, although all models examined are generally not doing well. Based on projections of CESM2, the global NSWS will decrease from 2021 to 2100 under all three SSPs. The projected NSWS declines significantly over the north of 20°N, especially across North America, Europe, and the mid-to-high latitudes of Asia; meanwhile, it increases over the south of 20°N. Under SSP585, there would be more light-windy days and fewer strong-windy days than those under SSP245, which leads to a significant global NSWS decline. Robust hemispheric-asymmetric changes in the NSWS could be due to the temperature gradient in the two hemispheres under global warming, with -1.2%, -3.5%, and -4.1% in the Northern Hemisphere, and 0.8%, 1.0%, and 1.5% in the Southern Hemisphere, for the near-term (2021-2040), mid-term (2041-2060), and long-term (2081-2100), respectively.


Assuntos
Aquecimento Global , Vento , Humanos , Previsões , Temperatura , Europa (Continente) , Mudança Climática
4.
Sci Total Environ ; 838(Pt 1): 156023, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595142

RESUMO

Great attention has been paid to the long-term decline in terrestrial near-surface wind speed (SWS) in China. However, how the SWS varies with regions and seasons and what modulates these changes remain unclear. Based on quality-controlled and homogenized terrestrial SWS data from 596 stations, the covarying SWS patterns during the Asian Summer Monsoon (ASM) and the Asian Winter Monsoon (AWM) seasons are defined for China using empirical orthogonal function (EOF) analysis for 1961-2016. The dominant SWS features represented by EOF1 patterns in both seasons show a clear decline over most regions of China. The interannual variability of the EOF1 patterns is closely related to the Northeast Asia Low Pressure (NEALP) and the Arctic Oscillation (AO), respectively. The EOF2 and EOF3 patterns during ASM (AWM) season describe a dipole mode of SWS between East Tibetan Plateau and East China Plain (between East Tibetan Plateau and Northeast China), and between Southeast and Northeast China (between Northeast China and the coastal areas of Southeast China), respectively. These dipole structures of SWS changes are closely linked with the oceanic-atmospheric oscillations on interannual scale.


Assuntos
Monitoramento Ambiental , Vento , China , Oceanos e Mares , Estações do Ano
5.
Sci Total Environ ; 551-552: 357-66, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26881727

RESUMO

Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide treatment should be avoided.

6.
Proc Natl Acad Sci U S A ; 110(1): 52-7, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248309

RESUMO

We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.


Assuntos
Biota , Secas , Fenômenos Fisiológicos Vegetais , Geografia , Fotossíntese/fisiologia , Caules de Planta/crescimento & desenvolvimento , Astronave , Fatores de Tempo , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...